A Classifier to Evaluate Language Specificity in Medical Documents
نویسندگان
چکیده
Consumer health information written by health care professionals is often inaccessible to the consumers it is written for. Traditional readability formulas examine syntactic features like sentence length and number of syllables, ignoring the target audience’s grasp of the words themselves. The use of specialized vocabulary disrupts the understanding of patients with low reading skills, causing a decrease in comprehension. A naïve Bayes classifier for three levels of increasing medical terminology specificity (consumer/patient, novice health learner, medical professional) was created with a lexicon generated from a representative medical corpus. Ninety-six percent accuracy in classification was attained. The classifier was then applied to existing consumer health web pages. We found that only 4% of pages were classified at a layperson level, regardless of the Flesch reading ease scores, while the remaining pages were at the level of medical professionals. This indicates that consumer health web pages are not using appropriate language for their target audience.
منابع مشابه
Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملA Hierarchical Classification Method for Breast Tumor Detection
Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...
متن کامل